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Abstract
We examine the measurability of the temporal ordering of two events, as
well as event coincidences. In classical mechanics, a measurement of the
order-of-arrival of two particles is shown to be equivalent to a measurement
involving only one particle (in higher dimensions). In quantum mechanics,
we find that diffraction effects introduce a minimum inaccuracy to which the
temporal order-of-arrival can be determined unambiguously. The minimum
inaccuracy of the measurement is given by δt = h̄/Ē where Ē is the total
kinetic energy of the two particles. Similar restrictions apply to the case of
coincidence measurements. We show that these limitations are much weaker
than limitations on measuring the time-of-arrival of a particle to a fixed location.

PACS numbers: 03.65.Ta, 02.30.Tb

1. Introduction

In quantum mechanics, one typically measures operators at fixed times t. For example, one
can measure the position of a particle at any given time, and obtain a precise result. One could
also consider the ‘dual’ situation in which one tries to measure at what time a particle arrives
at a fixed location xa . This problem of time-of-arrival [2] has been extensively discussed in
the literature4.

Although the time t is a well-defined parameter in the Schrödinger equation, Pauli has
shown that it cannot correspond to an operator for systems which have an energy bounded from
below [1]. Likewise, for general Hamiltonians, there is no operator which corresponds to the
time of an event such as the time-of-arrival of a particle to a fixed location [4]. In addition, if
one wishes to operationally measure the time-of-arrival by coupling the system to a clock, then
one finds that one cannot measure the time-of-arrival to an accuracy better than h̄/Ēk where

4 For a review of developments on the arrival time problems, see, for example, [3].
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Ēk is the kinetic energy of the particle [2, 4, 9]5. The limitation is based on calculations from
a wide variety of different measurement models, as well as general considerations; however,
there is no known proof of this result.

There have been attempts to circumvent these difficulties [3, 5–8]6, usually involving a
modified time-of-arrival operator or POVM measurements. Such operators can be measured
‘impulsively’ by interacting with the system at a certain (arbitrary) instant of time. In this
manner, one can attempt to measure the time-of-arrival even though the particle has not arrived
(and in fact, may never arrive, regardless of what the result of the time-of-arrival measurement
yields) [7]. These procedures are hence conceptually and operationally very different from
the case of continuous measurements discussed here.

One can also ask, given two events A and B, whether one can measure which event
occurred first. Surprisingly, there does not appear to be any discussion of this in the literature,
even though we believe that it is a much more primitive and fundamental concept. In this
paper, we are interested in whether the well-defined classical concepts of temporal ordering
have a quantum analogue. In other words, given two quantum mechanical systems, can we
measure which system attains a particular state first? Can we decide whether an event occurs
in the past or future of another event?

Classically, one can couple the system to a device which is triggered when an event occurs
and records which event happened first. One can consider a similar measurement scheme in
quantum mechanics which classically would correspond to a measurement of order of events.
One can then ask whether such a quantum measurement scheme is possible.

The fact that there is a limitation to measurements of the time of an event leads one
to suspect that the ordering of events may not be an unambiguous concept in quantum
mechanics. However, for a single quantum event A, although one cannot determine the
time an event occurred to arbitrary accuracy, it can be argued that one can often measure
whether A occurred before or after a fixed time tB to any desired precision.

Consider a quantum system initially prepared in a state ψ(0) and an event A which
corresponds to some projection operator �A acting on this state. For example, we could
initially prepare an atom in an excited state, and�A could represent a projection onto all states
where the atom is in its ground state, i.e. the atom has decayed. ψ(0) could also represent a
particle localized in the region x < 0 and �A could be a projection onto the positive x-axis.
In this case, the event A corresponds to the particle arriving to x = 0.

If the state evolves irreversibly to a state for which �Aψ(t) = 1, then we can easily
measure whether the eventA has occurred at any time t. We could therefore measure whether
a free particle arrives at a given location before or after a classical time tB . Of course, for many
systems, the system will not irreversibly evolve to the required state. For example, a particle
influenced by a potential may cross over the origin many times7. However, for an event such
as atomic decay, the probability of the atom being re-excited is relatively small, and one can
argue that the event is effectively irreversible.

For the case of a free particle which has been measured to be travelling towards the origin
from x < 0 one can argue that if at a later time we measure the projection operator onto the

5 The work [9] also contains arguments on why time-of-arrival distributions can be problematic, even in the classical
case.
6 The problem of time-of-arrival has also been discussed in the context of POVMs [6], distributional approaches,
for example [7] or within Bohmian mechanics [8]. The interested reader is referred to [3] for a review of the various
approaches.
7 Here, and throughout this paper, we will sometimes use language which refers to objective facts about a particle’s
motion. It should be understood that these descriptions refer to the results of measurements made on these particles.
For example, it can be measured that a particle is travelling towards the origin in the case where one can make a weak
measurement of position and momentum.
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positive axis and find it there, then the particle must have arrived at the origin at some earlier
time. This is in some sense a definition, because we know of no way to measure the particle
being at the origin without altering its evolution (or being extremely lucky and happening to
measure particle’s location when it is at the origin).

While measuring whether an event happened before or after a fixed time tB may be
possible, we will find that for two quantum events, one cannot in general measure whether the
time tA of event A occurred before or after the time tB of event B.

In section 2, confining ourselves to a particular example of order of events, we will
consider the question of order-of-arrival in quantum mechanics. Given two particles, can we
determine which particle arrived first at the location xa? Using a model detector, we find that
there is always an inherent inaccuracy in this type of measurement given by h̄/Ē where Ē is
the typical total energy of the two particles. This seems to suggest that the notion of past and
future is not a well-defined observable in quantum mechanics.

We will see that this inaccuracy limitation on the measurement of order-of-arrival is
weaker than the inaccuracy on measurements of time-of-arrival. If one attempts to measure
the order-of-arrival by measuring the time-of-arrival of both particles, then the limitation on
the measurement accuracy is much greater, being h̄/min{Ex,Ey} where Ex and Ey are the
typical energies of each individual particle.

In this paper we will consider only continuous measurements in which the detector is left
‘open’ for a long duration. One can also formally define an order-of-arrival operator such as

O = sgn (TAx − TAy) (1)

where Tx and Ty are the time-of-arrival operators

TA = mxa

p
−m

1√
p

x
1√
p
. (2)

As already noted, if one measures such an operator one is measuring which event occurred
first, even though neither event has in fact occurred (and may not occur). The measurement
of an operator, and the continuous, ‘operational’ methods discussed here, are therefore rather
different. Furthermore, the time-of-arrival operator cannot be self-adjoint [4], and therefore
has complex eigenvalues and eigenstates [10]. However, it can be modified [5]. We believe
that modifying the operator causes several technical as well as fundamental difficulties. For
example, it has been shown [11] that the eigenstates of modified time-of-arrival operators such
as those in [5] no longer describe events of arrival at a definite time. We anticipate similar
difficulties for the case of the order-of-arrival operator.

In section 3 we discuss measurements of coincidence. That is, can we determine whether
both particles arrived at the same time? Such measurements allow us to change the accuracy
of the device before each experiment. We find that the measurement fails when the accuracy
is made better than h̄/Ē.

In section 4, we discuss the relationship between the ordering of events and the resolving
power of ‘Heisenberg’s microscope’ [13], and argue that, in general, one cannot prepare a
two-particle state which is always coincident within a time of h̄/Ē. In the following we use
units such that h̄ = 1.

2. Which first?

Consider two free particles (which we will label as x and y) initially localized to the
right of the origin, and travelling to the left. We then ask whether one can measure which
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Figure 1. The measurement of order-of-arrival for two particles in one dimension is equivalent to
the scattering of a straight edge of one particle in two dimensions.

particle arrives at the origin first. The Hamiltonian for the system and measuring apparatus is
given by

H = Px
2

2m1
+

Py
2

2m2
+ Hi (3)

where Hi is some interaction Hamiltonian which is used to perform the measurement. One
possible choice for an interaction Hamiltonian is

Hi = αδ(x)θ(−y) (4)

with α going to infinity.
If the y-particle arrives before the x-particle, then the x-particle will be reflected back.

If the y-particle arrives after the x-particle, then neither particle sees the potential, and both
particles will continue travelling past the origin. One can therefore wait a sufficiently long
period of time, and measure where the two particles are. If both the x- and y-particles are
found past the origin, then we know that the x-particle arrived first. If the y-particle is found
past the origin while the x-particle has been reflected back into the positive x-axis then we
know that the y-particle arrived first.

Classically, this method would appear to unambiguously measure which of the two
particles arrived first. However, in quantum mechanics, this method fails. From (3) we can
see that the problem of measuring which particle arrives first is equivalent to deciding where
a single particle travelling in a plane arrives. Two particles localized to the right of the origin
are equivalent to a single particle localized in the first quadrant (see figure 1). The question of
which particle arrives first, becomes equivalent to the question of whether the particle crosses
the positive x-axis or the positive y-axis.

The equivalence between the two-particle system and the single-particle system in higher
dimensions can be seen by performing the canonical transformation

Px −→
√
m1

M
Px Py −→

√
m2

M
Py

(5)

x −→
√
M

m1
x y −→

√
M

m2
y
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and rescaling α → √
M/m1α. Our Hamiltonian now looks as that of a single particle of

mass M scattering off a thin edge in two dimensions. Classically, the event x arriving first,
corresponds to the case that the particle does not scatter off the edge and travels to quadrant
III. The event of y arriving first corresponds to scattering off the edge to quadrant IV.

However, quantum mechanically, we find that sometimes the particle is found in the two
classically forbidden regions I and II. If the particle is found in either of these two regions,
then we cannot determine which particle arrived first.

The solution for a plane wave which makes an angle θ0 with the x-axis is well known [14].
If the boundary condition is such that ψ(r, θ) = 0 on the negative y-axis, then the solution is

ψ(r, θ) = 1√
iπ

{
e−ikr cos(θ−θ0)�

[√
2kr cos

(
θ − θ0

2

)]

− eikr cos(θ+θ0)�

[
−

√
2kr sin

(
θ + θ0

2

)]}
(6)

where�(z) is the error function.
Asymptotically, this solution looks as

ψ �




e−ikr cos(θ−θ0) + f (θ) eikr√
r

−θ0 < θ < π + θ

e−ikr cos(θ−θ0) − eikr cos(θ+θ0) + f (θ) eikr√
r

−θ0 > θ > −π/2
f (θ) eikr√

r
π − θ0 < θ < 3π/2

(7)

where

f (θ) = −
√

i

8πk

[
1

sin
(
θ+θ0

2

) +
1

cos
(
θ−θ0

2

)
]
. (8)

The above approximation is not valid when cos
(
θ−θ0

2

)
or sin

(
θ+θ0

2

)
is close to zero.

Since we demanded that the particle was initially localized in the first quadrant, the initial
wave cannot be an exact plane wave, but we can imagine that it is a plane wave to a good
approximation.

We see from the solution above that the particle can be found in the classically forbidden
regions of quadrants I and II. For these cases, we cannot determine which particle arrived first.
This is due to the interference which occurs when the particle is close to the origin (the sharp
edge of the potential). The amplitude for being scattered off the region around the edge in the
direction θ is given by |f (r, θ)|2.

It might be argued that since these particles scattered, they must have scattered off
the potential, and therefore they represent experiments in which the y-particle arrived first.
However, this would clearly over-count the cases where the y-particle arrived first. We could
have placed just as easily our potential on the negative x-axis, in which case, we would
over-count the cases where the x-particle arrived first.

In the ‘interference region’ we cannot have confidence that our measurement worked at
all. We should therefore define a ‘failure cross section’ given by

σf =
∫ 2π

0
|f (θ)|2 = 1

k cos
(
θ0
2

) . (9)

From (9) we can see that cross section for scattering off the edge is the size of particle’s
wavelength multiplied by some angular dependence. Therefore, if the particle arrives within
a distance of the origin given by

δx > 2/k (10)
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the measurement will fail. We have dropped the angular dependence from (9)—the angular
dependence is not of physical importance for measuring which particle came first, as it depends
on the details of the potential (boundary conditions) being used. The particular potential we
have chosen is not symmetrical in x and y.

From this we can conclude that if the particle arrives to within one wavelength of the
origin, then there is a high probability that the measurement will fail.

If we want to relate this two-dimensional scattering problem back to two particles
travelling in one dimension, we need to use the relation

δt � mδx

k
. (11)

In other words, our measurement procedure relies on making an inference between time
measurements and spatial coordinates. The last two equations then give us

δt >
1

E
. (12)

One will not be able to determine which particle arrived first, if they arrive within a time 1/E
of each other, where E is the total kinetic energy of both the particles. Note that equation (12)
is valid for a plane wave with a definite momentum k. For wavefunctions for which dk � k,
one can replace E by the expectation value 〈E〉. However, for the wavefunctions which have
a large spread in momentum, or which have a number of distinct peaks in k, then to ensure
that the measurement almost always works, one must measure the order-of-arrival with an
accuracy given by

δt >
1

Ē
(13)

where Ē is the minimum typical total energy8. Hence we conclude that if the particles are
coincident to within 1/Ē, then the measurement fails.

It is rather interesting that this measurement limitation is less strict than that obtained if
we were to measure the time-of-arrival of each particle individually. This can be seen from the
mapping of equation (5) since the total energy Ē = Ex +Ey whereEx andEy are the energies
of each individual particle. The limitation on measurements of the time-of-arrival of each
particle is given by 1/Ex and 1/Ey [4]. Therefore, if we use time-of-arrival measurements to
determine the order-of-arrival, the minimal inaccuracy will have to be 1/min{Ex,Ey} which
can be considerably worse than 1/(Ex + Ey) using the method outlined above.

The extreme limit, where one of the particles has a very high energy is then rather
interesting. We have argued in the previous section that for the case of a single event, we
can measure with arbitrary accuracy if the event occurred before or after a certain given
time t0. Indeed, let us consider the above set-up in the special limit that Ey � Ex with
Ey → ∞. The diffraction pattern in this case is completely controlled by the y-particle and
δt > 1

Ē
∼ 1

Ey
→ 0. Furthermore, for the case dy � dEy � Ey , the location y of the

energetic particle can serve as a good ‘clock’ [10] and has a well-defined time-of-arrival to
y = 0. Hence, the initial state of the y particle defines (up to 1/Ey → 0) the time-of-arrival
of the y-particle, t0 = tA(y = 0). The final states of the ‘clock’ hence determine whether the
x-particle arrived before or after t = t0. If yfinal > 0 we conclude that tA(x = 0) < t0 and if
yfinal < 0 then tA(x = 0) > t0.

8 For example, one need not be concerned with exponentially small tails in momentum space, since the contribution
of this part of the wavefunction to the probability distribution will be small. If, however, ψ(E) has two large peaks
at Esmall and Ebig spread far apart, then if δt does not satisfy δt > 1/Esmall one will get a distorted probability
distribution. For a discussion of this, see [4].
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Figure 2. Potential for measuring whether two particles are coincident.

On can create a full clock, by considering many heavy ‘y’ particles, and determining
whether the ‘x’ particle came before or after each one of them. Increasing the number of
‘y’ particles and having them arrive at regularly spaced intervals would then constitute a
measurement of time-of-arrival. We would then expect to recover the limitation of reference
[4] as the density of ‘y’ is increased.

3. Coincidence

In the previous model for measuring which particle arrived first, we found that if the two
particles arrived to within 1/Ē of each other, the measurement did not succeed. The width
1/Ē was an inherent inaccuracy which could not be overcome. However, in our simple model,
we were not able to adjust the accuracy of the measurement.

It is, therefore, instructive to consider a measurement of ‘coincidence’ alone for which
one can quite naturally adjust the accuracy of the experiment. Given two particles travelling
towards the origin, we ask whether they arrive within a time δtc of each other. If the particles
do not arrive coincidentally, then we do not concern ourselves with which arrived first. The
parameter δtc can be adjusted, depending on how accurate we want our coincident ‘sieve’
to be. We will once again find that one cannot decrease δtc below 1/Ē and still have the
measurement succeed.

A simple model for a coincidence measuring device can be constructed in a manner
similar to (4). Mapping the problem of two particles to a single particle in two dimensions, we
could consider an infinite potential strip of length 2a and infinitesimal thickness, placed at an
angle of π/4 to the x- and y-axes in the first quadrant (see figure 2). Particles which miss the
strip and travel into the third quadrant are not coincident, while particles which bounce back
off the strip into the first quadrant are measured to be coincident. That is, if the x-particle is
located within a distance a of the origin when the y-particle arrives (or vice versa), then we
call the state coincident.

Classically, one expects there to be a sharp shadow behind the strip. Quantum
mechanically, we once again find an interference region around the strip which scatters
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particles into the classically forbidden regions of quadrants two and four. The shadow is not
sharp, and we are not always certain whether the particles were coincident.

A solution to plane waves scattering off a narrow strip is well known and can be found in
many quantum mechanical texts (see, for example, [14] where the scattered wave is written as
a sum of products of Hermite polynomials and Mathieu functions). However, for our purposes,
we will find it convenient to consider a simpler model for measuring coincidence, namely, an
infinite circular potential of radius a, centred at the origin.

Hi = αV (r/a) (14)

where V (x) is the unit disc, and we take the limit α → ∞.
It is well known that if a < 1/k, then there will not be a well-defined shadow behind the

disc. To see this, consider a plane wave coming in from negative x-infinity. It can be expanded
in terms of the Bessel function Jm(kr) and then written asymptotically (r � 1) as a sum of
incoming and outgoing circular waves

eikx =
∞∑
m=0

εmimJm(kr) cosmθ

�
√

1

2π ikr

[
eikr

∞∑
m=0

εm cosmθ + ie−ikr
∞∑
m=0

εm cosm(θ − π)

]
(15)

where εm is the Neumann factor which is equal to 1 for m = 0 and equal to 2 otherwise.
Since it can be shown that

M∑
m=0

εm cosmθ = sin
(
M + 1

2

)
θ

sin 1
2θ

. (16)

The two infinite sums approach 2πδ(θ) and 2πδ(θ − π), respectively, and so the incoming
wave comes in from the left and the outgoing wave goes out to the right. The presence of the
potential modifies the wavefunction and in addition to the plane wave, produces a scattered
wave

ψ = eikx +
eikr

√
r
f (rθ) (17)

where

eikr

√
r
f (r, θ) = −i

∞∑
m=0

εm e
1
2mπ i−iδm sin δmHm(kr) cosmθ (18)

Hm(kr) are Hermite polynomials and

tan δm = −Jm(ka)
Nm(ka)

(19)

(Nm(ka) are Bessel functions of the second kind). For large values of r, the wavefunction can
be written in a manner similar to (15), except that the outgoing wave is modified by the phase
shifts δm

ψ � 1√
2π ik

i
∞∑
m=0

εm cosm(θ − π)
e−ikr

√
r

+
eikr

√
r
f (r, θ) (20)

where

f (r, θ) � 1√
2π ik

∞∑
m=0

εme−2iδm(ka) cosmθ. (21)
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In the limit that ka � m the phase shifts can be written as

δm � ka − π

2

(
m +

1

2

)
. (22)

In the limit of extremely large a (but r � a), the outgoing waves then behave as

f (r, θ) � lim
M→∞

−i
1√

2π ik
e−2ika sin

(
M + 1

2

)
(θ − π)

sin 1
2 (θ − π)

(23)

where once again we see that the angular distribution goes as the delta function δ(θ −π). The
disc scatters the plane wave directly back, and a sharp shadow is produced. We see, therefore,
that in the limit of ka � 1, our measurement of coincidence works.

The differential cross section can in general be written as

σ = |f (θ)|2

=
∣∣∣∣∣

∞∑
m=0

εm e−2iδm(ka) cosmθ

∣∣∣∣∣
2

. (24)

For ka � 1 (but still finite), (24) can be computed using our expression for the phase shifts
from (22) and is given by

σ(θ) � a

2
sin

θ

2
+

1

2πk
cot2

θ

2
sin2 kaθ. (25)

The first term represents the part of the plane wave which is scattered back, while the
second term is a forward scattered wave which actually interferes with the plane wave. The
reason it appears in our expression for the scattering cross section is because we have written
our wavefunction as the sum of a plane wave and a scattered wave, and so part of the scattered
wave must interfere with the plane wave to produce the shadow behind the disc.

For ka � m, the phase shifts look as

δm(ka) � πm

(m!)2

(
ka

2

)2m

m 
= 0 (26)

and

tan δ0(ka) � −π
2 ln ka

. (27)

As a result, for ka � 1, δ0 is much greater than all the other δm and the outgoing solution
is almost a pure isotropic s-wave.

For ka � 1 the only contribution to (24) comes from δ0 and the differential cross section
becomes

σ(θ) � π

2k ln2 ka
(28)

and is isotropic. In other words, no shadow is formed at all, and the particles are scattered
into classically forbidden regions. We see, therefore, that as long as the s-wave is dominant,
our measurement fails. The s-wave will cease being dominant when δ0 is of the same order
as δ1. As can be seen from (22), δ1/δ0 approaches a limiting value of 1 when a sharp shadow
is produced. It is only when δ1/δ0 � 1 that the cross section no longer depends on k. This
is what we require then, for the probability of our measurement to succeed independently of
the energy of the incoming particles. From a plot of δ1/δ0 we see that this only occurs when
ka � 1 (figure 3). Our condition for an accurate measurement is therefore that a � 1/k.
Since δtc � am/k we find that

δtc � 1/E. (29)



7650 J Oppenheim et al

0

0.2

0.4

0.6

0.8

1

y

5 10 15 20
ka

Figure 3. δ1(ka)/δ0(ka) versus ka.

4. Coincident states

We have seen that we can only measure coincidence to an accuracy of δtc = 1/Ē. We shall
now show that one cannot prepare a two-particle system in a state ψc which always arrives
coincidentally within a time less than δtc. In other words, one cannot prepare a system in a state
which arrives coincidentally to greater accuracy than that set by the limitation on coincidence
measurements.

Preparing a state ψc corresponds to preparing a single particle in two dimensions which
always arrives inside a region δr = pδtc/m of the origin. In other words, suppose we were to
set up a detector of size δr at the origin. If a state ψc exists, then it would always trigger the
detector at some later time.

Our definition of coincidence requires that the state ψc not be a state where one particle
arrives at a time t > δtc before the other particle. In other words, if instead, we were to perform
a measurement on ψc to determine whether particle x arrived at least δtc before particle y, then
we must get a negative result for this measurement.

The latter measurement would correspond to the two-dimensional experiment of placing
a series of detectors on the positive y-axis, and measuring whether any of them are triggered by
ψc. If ψc is truly a coincident state, then none of the detectors which are placed at a distance
greater than y = δr can be triggered. One could even consider a single detector, placed for
example, at (0, δr), and one would require that ψc not trigger this detector.

Now consider the following experiment. We have a particle detector which is either
placed at the origin, or at (0, δr) (we are not told which). Then after a sufficient length of
time, we observe whether it has been triggered. If we can prepare a coincident state ψc, then it
will always trigger the detector when the detector is at the origin, but never trigger the detector
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when the detector is at (0, δr). This will allow us to determine whether the detector was placed
at the origin or at (0, δr). For example, if we use the detectors described in section 3 (namely,
just a scattering potential), then sometimes, the particle will be scattered, and sometimes it
will not be, and if it is scattered, we can conclude that the potential was centred around the
origin rather than around (0, δr).

However, as we know from Heisenberg’s gedanken microscope experiment, a particle
cannot be used to resolve anything greater than its wavelength. In other words ψc cannot be
used to determine whether the detector is at the origin, or at (0, δr) if δr < 2π/k. As a result,
ψc can only be coincident to a region around the origin of radius less than δr , or coincident
within a time δtc ∼ 1/E.

5. Conclusion

The notion that events proceed in a well-defined sequence is unquestionable in classical
mechanics. Events occur one after the other, and our knowledge concerning the events at one
time allows us to predict what will occur at another time. One can unambiguously determine
whether events lie in the past or future of other events. Given two events, A and B, one can
compute which event occurred first. It may be that event A causes event B, in which case
event A must have preceded event B.

However, in quantum mechanics the situation is different. We have argued that we cannot
measure the order-of-arrival for two free particles if they arrive within a time of 1/Ē of each
other, where Ē is their typical total kinetic energy. If we try to measure whether they arrive
within a time δtc of each other, then our measurement fails unless we have at least δtc > 1/Ē.
Furthermore, we cannot construct a two-particle state where both particles arrive to a certain
point within a time of 1/Ē of each other.

Interestingly, this inaccuracy limitation is weaker than what would be obtained if one tried
to measure the time-of-arrival of each particle separately.

It may be interesting to consider the situation where we have an event B which must be
preceded by an eventA. For example, B could be caused byA, or the dynamics could be such
that B can only occur when the system is in the state A. One can then attempt to force B to
occur as close to the occurrence of eventA as possible. A related problem has been studied in
connection to the maximum speed of dynamical systems such as quantum computers [13] and
it was found that one cannot force the system to evolve at a rate greater than 1/Ē (where Ē is
the average energy), rather than 1/dE (where dE is the uncertainty in the energy). However
since this result concerns only the free evolution of the system between states, it is not clear
a priori that it is indeed related to the 1/Ē restriction found in the present case where the
measurement interaction disturbs the system.
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